气动流场的光学测量

王润文 谭慈爱 何国珍

(中国科学院上海光机所)

提 要

超声速气流的密度涨落,附面层厚薄及冲击波扰动是影响气动激光器光束质量 的重要因素。本文讨论了比较干涉法、剪切干涉法、暗视场与刀口观察法的物理原 理,详细论述了它们之间的内在联系,指出它们的应用范围,同时列出了相应的测量 结果并作了讨论。

一、引言

热气动激光器工作段气流的均匀与否直 接影响激光输出功率及振荡的模式分布。由 于气动流场本征的密度梯度,喷管的附面层 影响,喷管侧壁包括腔区侧壁的光洁度好坏, 装配公差较大都会引起气流中的密度扰动。 更由于受激辐射的振荡输出,除一部分振动 跃迁能外,大部分的振动能转为分子平动能 与转动能,加热了工作气流,致使瞬间单位体 积中热能大为增加,引起了密度扰动和压缩 波或冲击波的出现。这诸因素都影响了激光 输出的光束质量,或其截面分布与角分布受 到弥散性变化。

我们用光学方法观察了超声速流场的分 布,给工作气流的均匀性提供了直观的图象。 气流的均匀与否从分子物理学观点来看就是 分子团的区域性存在与否,而不同密度的分 子团从光学角度来看就是气流折射率发生涨 落变化,这些变化可以是稳态的,也可以是随 机的。光通过透明的无色气流,其折射率不 均匀只能改变它的位相或传播方向,而不会 使振幅产生变化。因此观察气动流场就相当 于对位相物体的观察。实际上一切接收器包 括人眼都是平方接收的,所以光的位相变化 是不能用肉眼观察出来,只有把它转为振幅 变化的分布才可能用肉眼观察或记录下来。

二、实验方法的原理

为讨论简单化,设气流在 t 时的位相分 布为 φ(x, t), x 为空间坐标,一束均匀平面 光波透过它后,若略去振动因子 e^{iωt},其分布 便是 e^{iφ(x, t)},如果再令另一束参考均匀平面 波与它同向迭加,便得其强度分布是:

 $I_1(x, t) = |e^{i\varphi(x, t)} + 1|^2$

$$=2+2\cos\varphi(x, t) \qquad (1)$$

从(1)式余弦项可知,它使强度出现起伏,其 起伏规律与气流位相分布 $\varphi(x, t)$ 有关:

当
$$\varphi = 2n\pi$$
时

$$I_1 = 4$$

及 $\varphi = (2n+1)\pi$ 时

$$I_1=0$$

这就是比较干涉仪的原理。

另外如果与它同向迭加的不是均匀平面 波,而是透过光波自身,只是从时间上给以延 迟 4t,在空间上位移 4x,于是迭加后光场强

度分布便是

$$I_2(x, t) = |(e^{i\varphi(x, t)} + e^{i\varphi(x+\Delta x, t+\Delta t)})|^2$$

 $= 2 + 2\cos[\varphi(x, t) - \varphi(x+\Delta x, t+\Delta t)]$
(2)

当 4t=0 时, (2) 式可写成

 $I_2(x, t) = 2 + 2 \cos 4\varphi(\Delta x)$ (3) 与(1)式相仿, (2)与(3)式的余弦项是把位相 起伏转换为强度起伏了,只是这里起伏量与 $\Delta \varphi$ 有关,这就是剪切干涉仪原理。值得注意 的是这与(1)式所表示的比较干涉仪不相同 的地方在于(1)式的条纹起伏与 φ 本身有关。 当在空间的一定范围内 φ 存在平缓起伏量, 亦即其空间导数 $\varphi'(x)$ 很小,这样(1)式观察 得到的条纹起伏量就较大。另外,当 $\Delta x \to 0$ 时,得 $\Delta \varphi \to 0$,于是由(3)式得到的是一均匀 亮度, I_2 无起伏可见,这就表明(3)式的观察 方法只适用于存在位移量 Δx 的情况,又因为

 $\varphi(x, \Delta x) - \varphi(x) \approx \varphi'(x) \Delta x$ (4) 式中 $\varphi'(x)$ 为 $\varphi(x)$ 对 x 的导函数,可知它特 别适用于观察位相起伏是尖陡的情况,因为 这时 $\varphi'(x)$ 很大。对于气动流场在有冲击 波、交接面或附面层的情况,边界层位相起伏 突然,容易观察到,而其它平缓的折射率变化 的地方就会发生起伏降级效应,不容易观察 到。

将纯位相的光场转换为振幅起伏的光 场,还可以从改造位相光场的富氏谱着手(通 常称为光谱),因位相变化量 $\varphi(x)$ 通常是一 小量,略去 $\varphi^2(x)$ 及更高阶项,可以将气流物 函数 $e^{i\varphi(x)}$ 展开成如下等式

 $e^{i\varphi(x)} \approx 1 + i\varphi(x) \tag{5}$

(5)式中常数项为零级谱,或相当直流项,而 *i*φ(*x*)可展开为除零级以外的其它谱项,如果 设法挡去零级谱项,光场变化便由*i*φ(*x*)表 示,其强度起伏便是

$$I_3 = \varphi^2(x) \tag{6}$$

光场强度与其位相分布的平方成比例,(6)式 的观察即通常的暗视场观察。

另外,回顾(5)式,我们要观察的是右面

第二项 *i*φ(*x*),可将它用复数形式富氏级数展开

$$i\varphi(x) = \sum_{-\infty}^{\infty} c_n e^{inx} \tag{7}$$

因为是纯虚数,级数(7)式的系数必需满足如 下关系

$$c_n = a_n + ib_n$$
 $c_0 = 0$

 $c_n = -c_{-n}^*$ 或 $a_n + ib_n = -a_n + ib_{-n}$ (8) 将(8)式代入(7)式便成为

$$i\varphi(x) = 2i\sum_{1}^{\infty} (a_n \sin nx + b_n \cos nx) \quad (9)$$

若挡去一半谱项,即 −∞ 至 −1 各 项 去 掉 后, 我们的新函数为:

$$i\varphi_{1}(x) = \sum_{0}^{\infty} c_{n}e^{inx}$$

$$= \sum_{0}^{\infty} (a_{n} + ib_{n})e^{inx}$$

$$= \sum_{0}^{\infty} (a_{n} + ib_{n})(\cos nx + i\sin nx)$$

$$= \sum_{0}^{\infty} (a_{n}\cos nx - b_{n}\sin nx)$$

$$+ i\sum_{0}^{\infty} (a_{n}\sin nx + b_{n}\cos nx)$$

$$= \alpha(x) + i\beta(x) \qquad (10)$$

光的强度起伏

 $I_{4} \approx |(1+i\varphi_{1})|^{2} \approx 1+2\alpha(x)$ (11) 2 $\alpha(x)$ 就是观察到的强度起伏,比较(9)与 (10)式知, $\alpha(x)$ 中的第n级谱 α_{n} 是 β_{n} 的第 n级谱的导数 $\frac{\beta_{n}}{\alpha}$,即

$$\alpha(x) = \frac{\beta'(x)}{n}, \quad \alpha_n = \frac{\beta'_n}{n} = \frac{\varphi'_n}{2n},$$

这表明刀口观察也是一种微分观察,由于分母 n 存在,高阶谱被削弱了,图象变得平滑, 使锐角变圆了,出现了所谓浮雕感。

三、实验观察与讨论

上节中我们已讨论各种观察透明气流的 原理,它们都可以用相应的光学系统实现。 用马赫干涉仪、迈克尔逊干涉仪、泰曼干涉仪 和林尼克干涉仪等都可以实现(1)式的比较

• 41 •

干涉的观察。我们选择了马赫干涉仪系统对 超声速脉冲气动激光器流场进行了测量,所 用的光源是自制隐花菁染料调Q红宝石激 光器,红宝石棒直径6毫米,长90毫米,输出 波长 6943 Å, 脉宽 20 毫微秒, 输出单光斑能 量约1毫焦耳,激光束经扩束望远镜扩束到 直径为30毫米。图1是装置示意图, B1、B2 为二块50%分光板, A1、A2为全反射镜, 预 先调整使工作光束"1"与参考光束"2"波面重 合。测量时考虑到脉冲流场建立时间给以气 体爆燃瞬间与激光输出时间延时约0.7秒, 图 2 是记录结果, 附面层其厚, 这是由于喷管 膨胀角过小使工作段离喉部太远所致, 而其 不对称性可能是因加工与装配误差使系统不 对称引起的。流场中部弯曲达 4, 但脉冲气 动激光器的振荡波长是10.6微米,因此对应 这一波长流场光程差起伏量为 $\frac{\lambda}{30}$ 。当然这 是瞬态单张测量结果,若要对流场作出全面 判断,应该用高速摄影或快速逐格记录才能 完全确定流场的稳定状况。

图 2 超声速脉冲气动流场干涉图

用球面剪切棱镜系统或平面剪切干涉仪 皆可实现(2)式的观察。图 3 为一组 剪 切 棱 镜,探测光束由激光器经扩束为大口径平行 光束通过气流测量段,再经聚光镜会聚成球

面光束射入棱镜系统后,由于棱镜有一小楔 角,射出的两球面波不共心,两光锥轴夹有δ 小偏角,波面错开而相干涉,我们用这系统对 大型的连续气动激光器具有4马赫数的超声 速流场做实际测量, 探测光源为 He-Ne 激光 器, 单横模的输出光强为10毫瓦, 扩束后光 斑直径 80 毫米。图 4(a)及(b)是两具δ角分 别是1'与12'的棱镜系统的测量结果,由于 冲击波层仅有 10^{-3} 毫米数量级的厚度,大 δ 角测量比小δ角时多出一组激波线,这是要 避免的伪象, 而 $\delta=1'$ 的系统消除了此现象, 然而由于剪切量 4a 过小, 除激波线外, 位相 起伏量一般较为平缓, $\varphi'(x) = \frac{d\varphi(x)}{dx}$ 甚小, 干涉条纹一般显得平直。若能采用图5的平 面剪切系统,两组转角相等相反的剪切板可 据实际要求调整好剪切量 dx 的大小就可以

(b) δ=12'
 图 4 用球面剪切棱镜记录大型的连续
 气动激光器流场的干涉图

图 5 用平面剪切干涉仪观测气动流场

对流场获得更全面的观察。这两组系统只要 保证两光路的等光程就可以消除时间剪切 值,使 4t=0。其结果完全可用(4)式描述。

应用图6系统可实现刀口观察,实质上 平行的相干光通过气流后产生散射,其散射 光的富氏谱就聚焦于聚光镜的后焦面上,用 边缘薄而直的刀片挡去向下方的全部负谱 项,并割切零级谱项一半投影于屏上,(或经 一透镜再准直后投射屏上均可),于是剩下正 级序谱项干涉后使成象于屏上实现菲涅耳 反变换或富氏反变换,获得具有浮雕感的流 场分布象。图7(a)及图7(b)是两张分别在 中型与大型的气动激光器的超声速流场照 片,所用光源皆为单模 He-Ne 激光器,扩束 直径分别是30毫米及80毫米,图7(a)流场 不对称,有分布甚宽的激波横过工作区,这是 由于器件变形及喷管与平直段接缝过大而不 对称引起的。图7(b)的激波很强,对比度很 高,其原因多数可能是燃烧室在喷管断面上 压力分布不均匀引起的。

图 6 用刀口法观测气动流场

我们亦曾经用暗视场方法进行观察,灵 敏度和图象与刀口法相似,但是象亮度较低。

综上所述,流场的光学测量手段也是多 种多样的,此外尚有全息干涉测量、光谱测量

图 7 刀口法记录的气动流场

等等,但要根据实际要求简单易行,测量结果 容易判读、翻译与内在有直观而简单的图象 关系为佳。对于精度要求高的场合用有比较 光路的干涉仪如马赫干涉仪较好,而对只要 求了解附面层、交接面、冲击波分布的场合用 刀口法是简单而有效的。对于分布在大面积 内均匀的透明体包括玻璃体或晶体等,剪切 干涉仪却是很值得推荐的测量方法。

- Shepiro A. H.; Jhe Dynamics and Thermodynamics of Compressible Fluid Flow, Vol. I, Ronald, New York (1953).
- [2] A. B. Canbel, B. H. Jennings; Gas Dynamics, p. 290~310, New York.
- [3] 谭维翰,"衍射成象理论",中科院长春光机所集刊, 第3集,《光学信息理论特辑(1)》,25页(1964).
- [4] M. Born, E. Wolf; Principles of Optics, pp. 312
 ~314, New York (1959).
- [5] D. S. Dosanjh (ed); Modern Optical Methods in gas dynamics seseach, New York (1971).
- [6] F. J. Weinberg; Optics of Flames, Chapters 4~ 8, New York (1963)